Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level.

نویسندگان

  • Gha Young Lee
  • Nam Hee Kim
  • Zheng-Shan Zhao
  • Bong Soo Cha
  • Yu Sam Kim
چکیده

MCD (malonyl-CoA decarboxylase), which catalyses decarboxylation of malonyl-CoA, is known to play an important role in the regulation of malonyl-CoA concentration. Recently, it has been observed that the expression of MCD is significantly decreased in the hearts of the PPARalpha (peroxisome-proliferator-activated receptor alpha) (-/-) mice, where the rate of fatty-acid oxidation is decreased by the increased malonyl-CoA level [Campbell, Kozak, Wagner, Altarejos, Dyck, Belke, Severson, Kelly and Lopaschuk (2002) J. Biol. Chem. 277, 4098-4103]. This suggests that MCD may be transcriptionally regulated by PPARalpha. To investigate whether PPARalpha is truly responsible for transcriptional regulation of the rat MCD gene, transient reporter assay was performed in CV-1 cells. The promoter activity was increased by 17-fold in CV-1 cells co-transfected with PPARalpha/retinoid X receptor alpha expression plasmid. In sequence analysis of the promoter region, three putative PPREs (PPAR response elements) were identified, and promoter deletion analysis showed that PPRE2 and PPRE3 were functional. Electrophoretic mobility-shift assays revealed that PPARalpha/retinoid X receptor alpha heterodimer indeed bound to the two PPREs, and the binding specificity of PPARalpha on PPRE was also confirmed by experiments with mutated oligonucleotides. These results indicate that the elements behaved as a responsive site to PPARalpha activation. MCD mRNA levels in WY14643-treated rat hepatoma cells as well as in the liver of fenofibrate-fed Otsuka Long-Evans Tokushima fatty rats were also found to be increased, suggesting that PPARalpha can activate the rat hepatic MCD transcription by binding to the PPREs in the promoter. We propose that MCD performs an important role in understanding the regulatory mechanism between activated PPARalpha and fatty-acid oxidation by altering the malonyl-CoA concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Teucrium polium aerial parts extracts on malonyl-CoA decarboxylase level

Malonyl-CoA decarboxylase (MCD) is an enzyme involved in the decarboxylation of malonyl-CoA to acetyl-CoA. In order to explore the hypothesis that the changing plant materials’ MCD activity level can serve as therapy to diabetics, the effect of Teucrium polium compounds was studied in a diabetic rat model. In this experimental study, two groups of rats, a control and a diabetic group, each incl...

متن کامل

Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle.

Malonyl-CoA functions as a mediator in the hypothalamic sensing of energy balance and regulates the neural physiology that governs feeding behavior and energy expenditure. The central administration of C75, a potent inhibitor of the fatty acid synthase (FAS), increases malonyl-CoA concentration in the hypothalamus and suppresses food intake while activating fatty acid oxidation in skeletal musc...

متن کامل

Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids.

Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, an important modulator of fatty acid oxidation. We hypothesized that increased fatty acid availability would increase the expression and activity of heart and skeletal muscle MCD, thereby promoting fatty acid utilization. The results show that high-fat feeding, fasting, and streptozotocin-induced diabetes all significantl...

متن کامل

Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha.

Previous investigations show that intracerebroventricular administration of a potent inhibitor of fatty acid synthase, C75, increases the level of its substrate, malonyl-CoA, in the hypothalamus. The "malonyl-CoA signal" is rapidly transmitted to skeletal muscle by the sympathetic nervous system, increasing fatty acid oxidation, uncoupling protein-3 (UCP3) expression, and thus, energy expenditu...

متن کامل

Mislocalization and inhibition of acetyl-CoA carboxylase 1 by a synthetic small molecule.

Chromeceptin is a synthetic small molecule that inhibits insulin-induced adipogenesis of 3T3-L1 cells and impairs the function of IGF2 (insulin-like growth factor 2). The molecular target of this benzochromene derivative is MFP-2 (multifunctional protein 2). The interaction between chromeceptin and MFP-2 activates STAT6 (signal transducer and activator of transcription 6), which subsequently in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 378 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2004